Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

一个含有direct sum的short exact sequence但不是split short exact sequence的例子.

Recall the definition of split exact sequence

We say a short exact sequence split iff. it is isomorphic to the exact sequence

0AfABgB00\xrightarrow{} A\xrightarrow{f} A\oplus B \xrightarrow{g} B\xrightarrow{}0

where ff is the inclusion of the first component and gg is the projection onto the second
component.

注意到split exact seq 在定义里要求ffgg 分别是到ABA\oplus B的每一个component, 是否有例子使得一般的short exact seq s.t. 0AfABgB00\xrightarrow{} A\xrightarrow{f} A\oplus B \xrightarrow{g} B\xrightarrow{}0 但是不是exact seq?

答案是Yes.

Example of non split exact sequence

Consider the short exact sequence

0Z/2ZfZ/4ZgZ/2Z00\xrightarrow{} \mathbb{Z}/2\mathbb{Z}\xrightarrow{f} \mathbb{Z}/4\mathbb{Z} \xrightarrow{g} \mathbb{Z}/2\mathbb{Z}\xrightarrow{}0

where ff is the inclusion of the subgroup generated by 2, so f(1)=2f(1) = 2, and gg is the quotient
onto that subgroup, meaning g(1)=1g(1) = 1. This is not a split short exact sequence(obviously). Consider MN(Z/2ZZ/4Z)M\bigoplus\limits_{\mathbb{N}}(\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/4\mathbb{Z}).

Thus the exact seq

0Z/2ZhZ/4ZMiZ/2ZM00\xrightarrow{} \mathbb{Z}/2\mathbb{Z}\xrightarrow{h} \mathbb{Z}/4\mathbb{Z}\oplus M \xrightarrow{i} \mathbb{Z}/2\mathbb{Z}\oplus M\xrightarrow{}0

with h(a)=(f(a),0)h(a) = (f(a), 0) and t(a,m)=(g(a),m)t(a, m) = (g(a), m) is exact. Z/4ZM\mathbb{Z}/4\mathbb{Z}\oplus M is isomorphic to (Z/2Z)(Z/2ZM)(\mathbb{Z}/2\mathbb{Z})\oplus(\mathbb{Z}/2\mathbb{Z}\oplus M). However, this is not a split exact seq since

0Z/2ZhZ/4ZMiZ/2ZM00\xrightarrow{} \mathbb{Z}/2\mathbb{Z}\xrightarrow{h} \mathbb{Z}/4\mathbb{Z}\oplus M \xrightarrow{i} \mathbb{Z}/2\mathbb{Z}\oplus M\xrightarrow{}0

will give a exact seq $$0\xrightarrow{} \mathbb{Z}/2\mathbb{Z}\xrightarrow{f} \mathbb{Z}/4\mathbb{Z} \xrightarrow{g} \mathbb{Z}/2\mathbb{Z}\xrightarrow{}0$$ which is not split exact.

评论